COMPOSABLE
SECURITY

REPORT

Smart contract security review for Shroomy

Prepared by: Composable Security

Report ID: SHRM-f9d2b88d

Test time period: 2025-05-07 - 2025-05-14
Retest time period: 2025-05-19 - 2025-05-20
Report date: 2025-05-20

Version: 1.1

Visit: composable-security.com

https://composable-security.com

Contents

1. Retest summary (2025-05-20)
1.1 Results
1.2 Scope

2. Current findings status

3. Security review summary (2025-05-14)
3.1 Clientproject
3.2 Results
3.3 CentralizationRisk
3.4 SCOpPE

4. Project details
41 Projectsgoal
4.2 Agreedscopeoftests
43 Threatanalysis
4.4 Testingmethodology
4.5 Disclaimer

5. Vulnerabilities
[SHRM-f9d2b88d-M01] Inconsistent state via reentrancy
[SHRM-f9d2b88d-L01] Lack of two-step ownership transfer . .

composable-security.com

[SHRM-f9d2b88d-L02] Rewards and tokens loss on reverting reward token

[SHRM-f9d2b88d-L03] Denial of Service due to Out of Gas error
[SHRM-f9d2b88d-L04] Invalid revenue amount transferred . . .
[SHRM-f9d2b88d-L05] Arbitrary call to swapper
[SHRM-f9d2b88d-L06] Revert on approvals

6. Recommendations
[SHRM-f9d2b88d-R01] Use customerrors
[SHRM-f9d2b88d-R02] Emit events for important state changes
[SHRM-f9d2b88d-R03] Remove unnecessary code
[SHRM-f9d2b88d-R04] Implement full metadata interface . . .
[SHRM-f9d2b88d-R05] Change comparisonsign

[SHRM-f9d2b88d-R06] Remove unused ERC721EnumerableForbiddenBatchMint

Customerror. e
[SHRM-f9d2b88d-R07] Consider using newest Solidity version

7. Impact on risk classification

w

0 N O O O

© ©

10
11

12
12
13
14
16
17
17
19

21
21
21
22
22
23

24
24

26

https://composable-security.com

composable-security.com

8. Long-term best practices 27
8.1 Use automated tools to scan your coderegularly 27
8.2 Performthreatmodeling 27
8.3 Use Smart Contract Security Verification Standard 27
8.4 Discuss audit reports and learn fromthem 27
8.5 Monitor your and similarcontracts oL, 27

https://composable-security.com

composable-security.com

1. Retest summary (2025-05-20)

6 6
4
1
S—
0 0 0 0 0
AN AN I
CRITICAL HIGH MEDIUM LOW INFO

The description of the current status for each retested vulnerability and recommendation
has been added in its section.

1.1. Results

The Composable Security team participated in a one-time iteration to verify if the vulnerabil-
ities detected during the tests (between 2025-05-07and 2025-05-14) were correctly removed
and no longer appear in the code.

The current status of the detected issues is as follows:

o 1 vulnerability with a medium impact on risk has been fully removed.
o 6 vulnerabilities with a low impact on risk have been acknowledged by the team.
o 7 security recommendations were handled as follows:

o 3 have been implemented,

o, 4 have been acknowledged.

The team prioritized resolving the most important bug in the code but chose not to address
smaller issues that, while less severe, still influence best security practices. This decision was
primarily driven by considerations of gas efficiency and the project’s centralized architecture,
which enables the delegation of certain responsibilities to other components.

For future development cycles, it is strongly recommended to implement all reported recom-
mendations to enhance the protocol’s resilience, reduce systemic risk, and move toward a
more robust and anti-fragile design.

https://composable-security.com

composable-security.com

1.2. Scope
The retest scope included the same contracts, on a different commit in the same repository.

GitHub repository: https://github.com/23stud-io/aave-deploy-v3/
CommitID: f9d2b88d85b9c155cd0ff878a516ca8d002e3499 (not changed)

GitHub repository: https://github.com/23stud-io/contracts.shroomy.staking/
CommitlD: 48f5000501f6b653eb91fe68c5b19720188efb00

https://composable-security.com
https://github.com/23stud-io/aave-deploy-v3/

composable-security.com

2. Current findings status

Severity Vulnerability

SHRM-f9d2b88d-M01 Inconsistent state via reentrancy

SHRM-f9d2b88d-L01 Lack of two-step ownership transfer
SHRM-f9d2b88d-L02 Rewards and tokens loss on reverting re-

ward token

SHRM-f9d2b88d-L03 Denial of Service due to Out of Gas error
SHRM-f9d2b88d-L04 Invalid revenue amount transferred
SHRM-f9d2b88d-L05 Arbitrary call to swapper
SHRM-f9d2b88d-L06 Revert on approvals
ID Severity Recommendation Status
SHRM-fod2bssd-Ro1 ([[N[§8) Use custom errors

SHRM-f9d2b88d-R02 FINIF6) Emit events for important state changes ACKNOWLEDGED
SHRM-f9d2b88d-R03 FINIFe) Remove unnecessary code
SHRM-f9d2b88d-R04 FINIF6) Implement full metadata interface ACKNOWLEDGED

SHRM-f9d2b88d-R05 FINIF6) Change comparison sign

SHRM-f9d2b88d-R06 INFO Remove unused
ERC721EnumerableForbiddenBatchMint
custom error

SHRM-f9d2b88d-R07 ELNFe! Consider using newest Solidity version ACKNOWLEDGED

https://composable-security.com

composable-security.com

3. Security review summary (2025-05-14)

Ay iy

CRITICAL HIGH MEDIUM LOW INFO

3.1. Client project

The Shroomy project is a fork of AAVE v3 on Ink with additional contracts that support staking
tokens with various lock periods and earning rewards.

The project consists of two repositories. One contains the revenue distribution implementa-
tion, and the other contains the staking implementation.

3.2. Results

Composable Security was engaged to review the security of Shroomy. Composable Security
conducted this assessment over 1 person-week with 2 engineers.

The summary of findings is as follows:

» One vulnerability with a medium impact on risk was identified.

o Six vulnerabilities with a low impact on risk were identified.

o Seven recommendations have been proposed that can improve overall security and
help implement best practice.

» The project is highly centralized with the Owner role than is very powerful. The details
have been presented in section 3.3.

o The team was engaged and the communication was very good.

Composable Security recommends that Shroomy complete the following:

o Address all reported issues.

o Extend unit tests with scenarios that cover detected vulnerabilities where possible.

o Consider whether the detected vulnerabilities may exist in other places (or ongoing
projects) that have not been detected during engagement.

o Review dependencies and upgrade to the latest versions.

https://composable-security.com

composable-security.com

3.3. Centralization Risk

The current system implementation is not fully decentralized, allowing critical operations (e.g.,
changes of contracts’ parameters) to be performed without additional security measures such
as timelocks, granular permissions or multi-step processes.

Sample functions that have a significant impact and can affect the project immediately:

e setTreasury

e setRevenueProcessor

e setTreasuryPercentage
e setPoolAddress

e setVault

e setRewardToken

e approveToken

e rescueToken

e setOperatorStatus

This poses risks to the project’s security, as it places a substantial amount of trust in the Owner
role. It is crucial to ensure the highest level of protection for the private keys associated with
this roles.

While the project plans to share important operations via a multi-signature (multi-sig) setup,
this does not fully address the underlying issue. Operations can still be introduced suddenly
without warning users, and the controlling parties retain complete control over user funds.
Even though the code does not indicate any malicious intent, the users should be aware of
their dependency.

Recommendation

o To mitigate the risks associated with single points of failure or potential compro-
mises, appropriate security requirements and procedures should be established
to limit the impact in the event of loss of access or key compromise.

o Consider using TimelockController contract to delay changes of important pa-
rameters that can influence users’s funds.

o Use multi-sig wallets to control the protocol contracts and require to initiate any
critical updated by those wallets.

3.3.1 References

1. Secure Private Key Management for DApps
2. SCSVS G2: Policies and procedures
3. SCSVS G1: Architecture, design and threat modeling

https://composable-security.com
https://composable-security.com/blog/secure-private-key-management-for-d-apps/
https://github.com/ComposableSecurity/SCSVS/blob/master/2.0/0x100-General/0x102-G2-Policies-procedures.md
https://github.com/ComposableSecurity/SCSVS/blob/master/2.0/0x100-General/0x101-G1-Architecture-Design-Threat-Modeling.md

composable-security.com

3.4. Scope
The scope of the tests included selected contracts from the following repository.

GitHub repository: https://github.com/23stud-io/aave-deploy-v3/
CommitID: f9d2b88d85b9c155cd0ff878a516ca8d002e3499

GitHub repository: https://github.com/23stud-io/contracts.shroomy.staking/
CommitlD: 12986193c396bf94dc74622abd47474eafdf9663

The detailed scope of tests can be found in Agreed scope of tests.

https://composable-security.com
https://github.com/23stud-io/aave-deploy-v3/
https://github.com/23stud-io/contracts.shroomy.staking/

composable-security.com

4. Project details

4.1. Projects goal
The Composable Security team focused during this audit on the following:

o Perform a tailored threat analysis.

o Ensure that smart contract code is written according to security best practices.

o ldentify security issues and potential threats both for Shroomy and their users.

o The secondary goal is to improve code clarity and optimize code where possible.

4.2. Agreed scope of tests

The subjects of the test were selected contracts from the Shroomy repository.

GitHub repository:
https://github.com/23stud-io/aave-deploy-v3/
CommitlD: f9d2b88d85b9c155cd0ff878a516ca8d002e3499

Files in scope:

L contracts
— abstract

L OperatorControlled.sol
—— RevenueDistributor.sol
—— RevenueProcessor.sol

— Vault.sol

GitHub repository: https://github.com/23stud-io/contracts.shroomy.staking/
CommitlD: 12986193c396bf94dc74622abd47474eafdf9663

Files in scope:

L contracts

t:: LockerPass.sol

ShroomyLocker.sol

Documentation: The behavior of the contracts was described in the comments, no addi-
tional documentation was provided.

https://composable-security.com
https://github.com/23stud-io/aave-deploy-v3/
https://github.com/23stud-io/contracts.shroomy.staking/

composable-security.com

4.3. Threat analysis

This section summarizes the potential threats that were identified during initial threat model-
ing performed before the audit. The tests were focused, but not limited to, finding security
issues that could be exploited to achieve these threats.

Key assets that require protection:

o alokens.
o Reward Tokens.
» Staking Positions.

Potential attackers goals:

o Theft of tokens.

o Lock users’ tokens in the contract.
o Treasury percentage manipulation.
o Denial of Service

Potential scenarios to achieve the indicated attacker’s goals:

o Unauthorized claim for specific staking position.

o Unauthorized minting of tokens.

o Unauthorized unstaking.

o Influence or bypass the business logic of the system.

o Take advantage of arithmetic errors.

o Privilege escalation through incorrect access control to functions or poorly written mod-
ifiers.

o Existence of known vulnerabilities (e.g., front-running, re-entrancy).

o Design issues.

o Excessive power, too much in relation to the declared one.

o Unintentional loss of the ability to govern the system.

o Private key compromise, rug-pull.

4.4. Testing methodology
Smart contract security review was performed using the following methods:

o Q&A sessions with the Shroomy development team to thoroughly understand inten-
tions and assumptions of the project.

o Initial threat modeling to identify key areas and focus on covering the most relevant
scenarios based on real threats.

o Automatic tests using slither.

o Custom scripts (e.g. unit tests) to verify scenarios from initial threat modeling.

o Manual review of the code.

10

https://composable-security.com

composable-security.com

4.5. Disclaimer
Smart contract security review IS NOT A SECURITY WARRANTY.

During the tests, the Composable Security team makes every effort to detect any occurring
problems and help to address them. However, it is not allowed to treat the report as a security
certificate and assume that the project does not contain any vulnerabilities. Securing smart
contract platforms is a multi-stage process, starting from threat modeling, through develop-
ment based on best practices, security reviews and formal verification, ending with constant
monitoring and incident response.

Therefore, we encourage the implementation of security mechanisms at all stages of
development and maintenance.

11

https://composable-security.com

composable-security.com

5. Vulnerabilities

[SHRM-f9d2b88d-M01] Inconsistent state via reentrancy

The team implemented all recommendations and additionally created a test analyz-
ing this scenario. The clearance of token approvals is done in LockerPass.sol#L197.
The onERC721Received is now invoked after completing the transfer logic: Locker-
Pass.sol#L.294, LockerPass.sol#L311.

Affected files

o LockerPass.sol#L.292-L.295
o ShroomyLocker.sol#L153-L168

Description

The implementation of the safeTransferFrom function executes the external call to the re-
cipient before completing the transfer logic. This sequence creates a vulnerability due to
inadequate approval and ownership checks, allowing an attacker to unstake while retaining
ownership of a LockerPass.

Note: It should be emphasized that the staking position associated with the LockerPass is
cleared during this process, and an attacker cannot steal tokens by attempting to unstake
from the same position again.

Attack scenario
Attackers can exploit this vulnerability through the following steps:

(1) Stake tokens to obtain a LockerPass token.

(2) Transfer the LockerPass token to their own contract.

(8) The contract sends an approval to itself for the LockerPass token and subsequently
calls the safeTransferFrom function, transferring the token from the zero address to
itself.

(4) The LockerPass contract triggers the onERC721Received function within the attacker’s
contract, which then calls the unstake function.

(5) The unstake function burns the LockerPass token, and at this point, the transfer logic
begins execution.

12

https://composable-security.com
https://github.com/23stud-io/contracts.shroomy.staking/blob/48f5000501f6b653eb91fe68c5b19720188efb00/contracts/LockerPass.sol#L197
https://github.com/23stud-io/contracts.shroomy.staking/blob/48f5000501f6b653eb91fe68c5b19720188efb00/contracts/LockerPass.sol#L294
https://github.com/23stud-io/contracts.shroomy.staking/blob/48f5000501f6b653eb91fe68c5b19720188efb00/contracts/LockerPass.sol#L294
https://github.com/23stud-io/contracts.shroomy.staking/blob/48f5000501f6b653eb91fe68c5b19720188efb00/contracts/LockerPass.sol#L311
https://github.com/23stud-io/contracts.shroomy.staking/blob/12986193c396bf94dc74622abd47474eafdf9663/contracts/LockerPass.sol#L292-L295
https://github.com/23stud-io/contracts.shroomy.staking/blob/12986193c396bf94dc74622abd47474eafdf9663/contracts/ShroomyLocker.sol#L153-L168

composable-security.com

(6) The transferFrom function (the transfer logic) verifies that the current owner is the zero
address and confirms that the approved operator is the attacker’s contract (which has
not been cleared upon burning), thereby changing the owner back to the attacker’s
contract.

(7) The attacker’s contract successfully unstakes the tokens while still maintaining owner-
ship of the LockerPass token.

A proof of concept (PoC) has been shared with the development team.

Result of the attack: Inconsistent state where the burnt tokens appear to be owned by
users.

Recommendation

To address this vulnerability, the following steps should be implemented:
o Clear tokenApprovals for the token upon burning.
o Invoke the onERC721Received function after completing the transfer logic.

References
1. SCSVS G6: Communication

[SHRM-f9d2b88d-L01] Lack of two-step ownership transfer

Retest (2025-05-19)

The team is aware and has decided not to implement a fix for this issue for the follow-
ing reasons: "We are not implementing the fix for two-step ownership transfer as the
contract will be managed by a multisig. Ownership transfer will be verified before the
project handover".

Affected files

o ShroomyLocker.sol#L18
o Vault.sol#L8
o OperatorControlled.sol#L11

Description

Some smart contracts currently implement inheritance from Ownable. This pattern poses a
risk of irretrievable loss of administrative control in case of instant transfer of ownership to
any address except address(0).

13

https://composable-security.com
https://github.com/ComposableSecurity/SCSVS/blob/master/2.0/0x100-General/0x106-G6-Communications.md
https://github.com/23stud-io/contracts.shroomy.staking/blob/12986193c396bf94dc74622abd47474eafdf9663/contracts/ShroomyLocker.sol#L18
https://github.com/23stud-io/aave-deploy-v3//tree/f9d2b88d85b9c155cd0ff878a516ca8d002e3499/contracts/Vault.sol#L8
https://github.com/23stud-io/aave-deploy-v3//tree/f9d2b88d85b9c155cd0ff878a516ca8d002e3499/contracts/abstract/OperatorControlled.sol#L11

composable-security.com

In case of invalid address passed as the new owner (e.g. a contract that cannot make calls to
protected functions and the transferOwnership function) there is no way to get the ownership
back.

To enhance security, it is recommended to transition to Ownable2Step, which offers a more
secure mechanism for the transfer of elevated privileges through a structured two-step pro-
cess.

Vulnerable scenario
The following steps lead to the described result:

(1) The owner transfers ownership to a new address that has a typo.

(2) The ownership is transferred instantly.

(8) The owner cannot control the contract anymore, neither with old address because the
ownerships has been transferred, nor with new one because they don’t have access to
the private key.

Result: Loss of the ownership for the contract.

Recommendation

o Inherit from Ownable2Step instead of Ownable.
» Consider overriding the renounce () function if there is no intention to forfeit control
completely.

References

1. Ownable2Step
2. SCSVS G1: Architecture Design Threat Modeling
3. SCSVS G5: Access Control

[SHRM-f9d2b88d-L02] Rewards and tokens loss on
reverting reward token

ACKNOWLEDGED

Retest (2025-05-19)

The team is aware and has decided not to implement a fix for this issue for the following
reasons: "The project team will carefully select reward tokens, using only verified and
secure contracts".

14

https://composable-security.com
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable2Step.sol
https://github.com/ComposableSecurity/SCSVS/blob/master/2.0/0x100-General/0x101-G1-Architecture-Design-Threat-Modeling.md
https://github.com/ComposableSecurity/SCSVS/blob/master/2.0/0x100-General/0x105-G5-Access-Control.md

composable-security.com

Affected files
o ShroomyLocker.sol#L.232

Description

The claimfunction is responsible for iterating through all reward tokens to distribute rewards
to the owner of a stake position. If an error occurs with the transfer of any single reward token,
the entire claiming process fails, preventing the user from receiving any rewards.

Furthermore, the unstake function is designed to automatically call the claim function to
ensure all rewards are collected before allowing an unstake. As a result, if any reward token
encounters an issue during the transfer, users are unable to unstake their tokens, effectively
locking both staked tokens and rewards in the contract.

There is no functionality that permits the removal of a problematic reward token, meaning
that the only solution to this issue lies in modifying the implementation of the reward token
itself.

Vulnerable scenario
This issue can occur through the following sequence:

(1) A user stakes tokens in the contract.

(2) Over time, the user accumulates rewards from multiple reward tokens.

(8) When the user attempts to unstake their tokens, the claim function fails due to an
issue with the transfer of one of the reward tokens.

(4) As aresult, both the staked tokens and accrued rewards remain locked in the contract.

Result: Users’ rewards and staked tokens become inaccessible and remain locked in the
staking contract.

Recommendation

To enhance user experience and mitigate this issue, consider decoupling the reward
claiming process from the unstaking process. This would allow users to unstake their
tokens independently of claiming rewards.

Furthermore, implementing a feature that lets users claim specific reward tokens would
provide additional flexibility and reduce the risk of being locked out due to a single failing
token.

References
1. SCSVS G8: Denial of service

15

https://composable-security.com
https://github.com/23stud-io/contracts.shroomy.staking/blob/12986193c396bf94dc74622abd47474eafdf9663/contracts/ShroomyLocker.sol#L232
https://github.com/ComposableSecurity/SCSVS/blob/master/2.0/0x100-General/0x108-G8-Denial-of-Service.md

composable-security.com

[SHRM-f9d2b88d-L03] Denial of Service due to Out of Gas
error

ACKNOWLEDGED
Retest (2025-05-19)

The team is aware and has decided not to implement a fix for this issue for the fol-
lowing reasons: "In case of a large number of assets, authorized operators can call
distributeToken for specific tokens individually. Support for new assets is a controlled
process and we do not expect a sudden, significant increase in their number".

Affected files

o RevenueDistributor.sol#L132
o RevenueProcessor.sol#L78

o RevenueProcessor.sol#L101
o RevenueProcessor.sol#L183

Description

Some loops iterate over the unbound lists, retrieved from other contracts (e.g. the list
supportedAssets retrieved from the pool using the getReservesList function). If the list
returned by those function grows significantly, it can lead to reverts due to the Out of Gas
errors, blocking the unwraping and distributions of tokens.

Vulnerable scenario
The following steps lead to the described result:

(1) The RevenueDistributor is associated to a pool that supports some tokens.

(2) The list returned by getReservesList is small enough that the distribute function is
executed correctly and successfully.

(8) The list of reserves increases significantly.

(4) The next call to distribute function iterates over all reserves from getReservesList
result and uses all gas.

Result: Revenue loss because of the locked tokens.

Recommendation

Consider allowing to iterate over selected indexes of the list.

16

https://composable-security.com
https://github.com/23stud-io/aave-deploy-v3//tree/f9d2b88d85b9c155cd0ff878a516ca8d002e3499/contracts/RevenueDistributor.sol#L132
https://github.com/23stud-io/aave-deploy-v3//tree/f9d2b88d85b9c155cd0ff878a516ca8d002e3499/contracts/RevenueProcessor.sol#L78
https://github.com/23stud-io/aave-deploy-v3//tree/f9d2b88d85b9c155cd0ff878a516ca8d002e3499/contracts/RevenueProcessor.sol#L101
https://github.com/23stud-io/aave-deploy-v3//tree/f9d2b88d85b9c155cd0ff878a516ca8d002e3499/contracts/RevenueProcessor.sol#L183

composable-security.com

References
1. SCSVS G8: Denial of service

[SHRM-f9d2b88d-L04] Invalid revenue amount transferred

Retest (2025-05-19)

The team is aware and has decided not to implement a fix for this issue for the following
reasons: "The distribute function is regularly called, ensuring that any remaining small
amount of tokens will be distributed in the next cycle".

Affected files
o RevenueDistributor.sol#L108

Description

The distributeToken function retrieves the balance of token to be distributed using
scaledBalanceOf function which returns smaller amount than the real balance of the distrib-
utor.

Note: The development team has addressed this in the comments and noted that "/t returns
the internal scaled balance without interest, which is safer for arithmetic operations" which is
not true.

Result: Inability to distribute all tokens in one call to distributeToken.

Recommendation
Use the balance0f function to retrieve the amount to be transferred.

References
1. SCSVS I2;: Token

[SHRM-f9d2b88d-L05] Arbitrary call to swapper

17

https://composable-security.com
https://github.com/ComposableSecurity/SCSVS/blob/master/2.0/0x100-General/0x108-G8-Denial-of-Service.md
https://github.com/23stud-io/aave-deploy-v3//tree/f9d2b88d85b9c155cd0ff878a516ca8d002e3499/contracts/RevenueDistributor.sol#L108
https://github.com/ComposableSecurity/SCSVS/blob/master/2.0/0x300-Integrations/0x302-I2-Token.md

composable-security.com

Retest (2025-05-19)

The team is aware and has decided not to implement a fix for this issue for the following
reasons: "SuperSwap API provides encoded calldata, which significantly complicates
their decoding and validation of parameters such as minAmountOut. The output token is
strictly defined as rewardToken during calldata generation by authorized operators who
verify parameters and monitor swap execution. Additionally, the slippage parameter is
configured during data preparation in the Superswap API before calldata generation. If
minAmountOut is not achieved, the transaction will be rejected".

Affected files

o RevenueProcessor.sol#L133

Description

The batchExecuteRawSuperSwap function uses low-level call to make a swap. However, it is
an error-prone design where unspecified or zeroed minimum output amount can lead to the
swap being sandwiched and the RevenueProcessor contract being drained.

Additionally, there is no check whether the last swap has the reward token as the output
token.

Attack scenario
The following steps lead to the described result:

(1) The authorized address calls the batchExecuteRawSuperSwap function with
superSwapCalldatas calldatas.

(2) One of the calldata does not specify the minimum output token amount.

(8) The attacker notices sandwichable swap and imbalances the pool before swap.

(4) The swap is being executed.

(5) The attacker uses the second transaction to rebalance the pool and steal tokens swapped
by the authorized address.

Result of the attack: Partial theft of swapped tokens using sandwiching.

Recommendation

o Use specific functions to execute swaps (e.g. via adapter contracts that integrate
with particular protocol).

o Check whether the last output token is the reward token.

o Validate the final output token amount to be greater or equal to the minimum
amount specified in the parameter.

18

https://composable-security.com
https://github.com/23stud-io/aave-deploy-v3//tree/f9d2b88d85b9c155cd0ff878a516ca8d002e3499/contracts/RevenueProcessor.sol#L133

composable-security.com

References
1. SCSVS G4: Business Logic

[SHRM-f9d2b88d-L06] Revert on approvals

Retest (2025-05-19)

The team is aware and has decided not to implement a fix for this issue for the follow-
ing reasons: "The issue concerns non-standard ERC20 implementations. In case of
encountering a problematic token, operators can use a specific approach to swap or
introduce dedicated functions to exchange tokens for a dedicated reward token".

Affected files

o RevenueProcessor.sol#L130-L137

Description

Certain tokens do not permit setting approvals to zero when they are already at zero. This
restriction can lead to a revert during the approval reset process at line 137. Similarly, these
tokens also disallow setting approvals to a non-zero value if the current approval is already
non-zero, which can result in a revert at line 130.

Vulnerable scenario
The following steps illustrate how the issue can occur:

(1) The authorized address aims to swap 100 tokens (utilizing an input token that re-
verts when attempts are made to change approvals from 0 to 0). It initiates a call
to batchExecuteRawSuperSwap with the intended amount set as 100 (provided in the
superSwapCalldatas parameter).

(2) The contract attempts to approve the transfer of 100 tokens and proceeds with the
swap.

(8) During the process, the contract tries to clear the approval, but since the current ap-
proval is already 0, the call to the approve function fails.

(4) This failure cancels the swap.

Result: Inability to successfully swap the token.

19

https://composable-security.com
https://github.com/ComposableSecurity/SCSVS/blob/master/2.0/0x100-General/0x104-G4-Business-Logic.md
https://github.com/23stud-io/aave-deploy-v3//tree/f9d2b88d85b9c155cd0ff878a516ca8d002e3499/contracts/RevenueProcessor.sol#L130-L137

composable-security.com

Recommendation

Ensure that the approval is set for the amount being swapped and only attempt to clear
the approval if there is an existing approval present.

References
1. SCSVS I12: Token

20

https://composable-security.com
https://github.com/ComposableSecurity/SCSVS/blob/master/2.0/0x300-Integrations/0x302-I2-Token.md

composable-security.com

6. Recommendations

[SHRM-f9d2b88d-R01] Use custom errors
(INFO ACKNOWLEDGED]

Retest (2025-05-19)
For now, the team decided not to implement the recommended best practice.

Description

Custom errors offer enhanced gas efficiency compared to traditional string messages and
enable developers to provide detailed descriptions of errors utilizing NatSpec documentation.

Furthermore, starting from version 0.8.26 of Solidity, it is no longer necessary to negate the
require expression in order to revert when utilizing custom errors, as they are now directly
compatible with the require function.

Currently, all require statements use string messages instead of custom ones.

Recommendation

Implement custom errors in place of string messages.
Custom errors have been supported by the require function since Solidity version
0.8.26.
require(
balance [msg.sender] >= amount,
InsufficientBalance(balance [msg.sender], amount)
)3
References

1. SCSVS G11: Code Clarity

[SHRM-f9d2b88d-R02] Emit events for important state
changes

[INFO | ACKNOWLEDGED

21

https://composable-security.com
https://github.com/ComposableSecurity/SCSVS/blob/master/2.0/0x100-General/0x111-G11-Code-Clarity.md

composable-security.com

Retest (2025-05-19)
For now, the team decided not to implement the recommended best practice. |

Description

The update of critical parameters should be tracked with events.

Recommendation

Emit an event in the following functions:
o setPoolAddress

References

1. SCSVS G1: Architecture, design and threat modeling
2. Principles and Best Practices to Design Solidity Events in Ethereum and EVM

[SHRM-f9d2b88d-R03] Remove unnecessary code
INFO

The recommendation has been implemented as recommended.

Description

There are code snippets that have no effect on the business logic and cannot be reached:

124 ‘require (msg.sender !'= address(0), ’Invalid address’); ‘
Recommendation
Remove indicated code snippets.
References

1. G11: Code clarity

[SHRM-f9d2b88d-R04] Implement full metadata interface
(INFO] ACKNOWLEDGED

22

https://composable-security.com
https://github.com/23stud-io/aave-deploy-v3/blob/f9d2b88d85b9c155cd0ff878a516ca8d002e3499/contracts/RevenueDistributor.sol#L93
https://github.com/ComposableSecurity/SCSVS/blob/master/2.0/0x100-General/0x101-G1-Architecture-Design-Threat-Modeling.md
https://www.blog.eigenlayer.xyz/principles-and-best-practices-to-design-solidity-events-in-ethereum-and-evm/
https://github.com/23stud-io/contracts.shroomy.staking/blob/12986193c396bf94dc74622abd47474eafdf9663/contracts/ShroomyLocker.sol#L124
https://github.com/ComposableSecurity/SCSVS/blob/master/2.0/0x100-General/0x111-G11-Code-Clarity.md

composable-security.com

Retest (2025-05-19)

For now, the team decided not to implement the recommended best practice. |

Description

The LockerPass contract implements symbol and name function from ERC721Metadata in-
terface, but it does not support this interface (in supportsInterface function) and does not
implement tokenURI function.

Recommendation
Consider full implementation and support of ERC721Metadata interface.

References

1. SCSVS G1: Architecture, design and threat modeling
2. G11: Code clarity

[SHRM-f9d2b88d-R05] Change comparison sign
=

The recommendation has been implemented as recommended.

Description

The unstake function checks whether the unlockAt is reached. However, it uses strict greater
than sign which means that when the current timestamp is equal to unlockAt the tokens
cannot be unstaked. The contract should allow to unstake tokens when the block timestamp
is equal to unlockAt.

Recommendation
Change < to <=.

References

1. G11: Code clarity

23

https://composable-security.com
https://github.com/ComposableSecurity/SCSVS/blob/master/2.0/0x100-General/0x101-G1-Architecture-Design-Threat-Modeling.md
https://github.com/ComposableSecurity/SCSVS/blob/master/2.0/0x100-General/0x111-G11-Code-Clarity.md
https://github.com/23stud-io/contracts.shroomy.staking/blob/12986193c396bf94dc74622abd47474eafdf9663/contracts/ShroomyLocker.sol#L157
https://github.com/23stud-io/contracts.shroomy.staking/blob/12986193c396bf94dc74622abd47474eafdf9663/contracts/ShroomyLocker.sol#L157
https://github.com/ComposableSecurity/SCSVS/blob/master/2.0/0x100-General/0x111-G11-Code-Clarity.md

composable-security.com

[SHRM-f9d2b88d-R06] Remove unused
ERC721EnumerableForbiddenBatchMint custom error

The recommendation has been implemented as recommended.

Description

The LockerPass contract contains a custom error that is not used anywhere.

51 ‘error ERC721EnumerableForbiddenBatchMint () ; ‘

Recommendation
It is recommended to remove unused custom error.

References
1. G11: Code clarity

[SHRM-f9d2b88d-R07] Consider using newest Solidity
version

[INFO | ACKNOWLEDGED

Retest (2025-05-19)
For now, the team decided not to implement the recommended best practice.

Description

In accordance with the best security practices, it is recommended to use the latest stable
versions of major Solidity releases.

Very often, older versions contain bugs that have been discovered and fixed in newer ver-
sions. Moreover, it is worth remembering that the version should be clearly specified so that
all tests and compilations are performed with the same version.

The current implementation uses:

24

https://composable-security.com
https://github.com/23stud-io/contracts.shroomy.staking/blob/12986193c396bf94dc74622abd47474eafdf9663/contracts/LockerPass.sol#L51
https://github.com/ComposableSecurity/SCSVS/blob/master/2.0/0x100-General/0x111-G11-Code-Clarity.md

composable-security.com

bragma solidity ~0.8.20;

Recommendation

Use the latest stable version of major Solidity release:

bragma solidity 0.8.29;

Note: If it is planned to deploy on multiple chains, stay aware that some of them don'’t
support PUSHO opcode. If solc >=0.8.20 is used, the PUSHO opcode will be present in
the bytecode. In this situation, it is recommended to choose 0.8.19.

References

1. SCSVS G1: Architecture, design and threat modeling
2. Floating pragma

25

https://composable-security.com
https://github.com/ComposableSecurity/SCSVS/blob/master/2.0/0x100-General/0x101-G1-Architecture-Design-Threat-Modeling.md
https://swcregistry.io/docs/SWC-103

composable-security.com

7. Impact on risk classification

Risk classification is based on the one developed by OWASP ', however it has been adapted
to the immutable and transparent code nature of smart contracts. The Web3 ecosystem
forgives much less mistakes than in the case of traditional applications, the servers of which
can be covered by many layers of security.

Therefore, the classification is more strict and indicates higher priorities for paying attention
to security.

OVERALL RISK SEVERITY

HIGH CRITICAL

Impact on risk MEDIUM
LOW
MEDIUM

Likelihood

TOWASP Risk Rating methodology

26

https://composable-security.com
https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

composable-security.com

8. Long-term best practices

8.1. Use automated tools to scan your code regularly

It's a good idea to incorporate automated tools (e.g. slither) into the code writing process.
This will allow basic security issues to be detected and addressed at a very early stage.

8.2. Perform threat modeling

Before implementing or introducing changes to smart contracts, perform threat modeling
and think with your team about what can go wrong. Set potential targets of the attacker and
possible ways to achieve them, keep it in mind during implementation to prevent bad design
decisions.

8.3. Use Smart Contract Security Verification Standard

Use proven standards to maintain a high level of security for your contracts. Treat individual
categories as checklists to verify the security of individual components. Expand your unit
tests with selected checks from the list to be sure when introducing changes that they did not
affect the security of the project.

8.4. Discuss audit reports and learn from them

The best guarantee of security is the constant development of team knowledge. To use
the audit as effectively as possible, make sure that everyone in the team understands the
mistakes made. Consider whether the detected vulnerabilities may exist in other places,
audits always have a limited time and the developers know the code best.

8.5. Monitor your and similar contracts

Use the tools available on the market to monitor key contracts (e.g. the ones where user’s
tokens are kept). If you have used code from another project, monitor their contracts as well
and introduce procedures to capture information about detected vulnerabilities in their code.

27

https://composable-security.com

Damian Rusinek
Smart Contracts Auditor

@drdr_zz
damian.rusinek@composable-security.com

Pawet Kurytowicz
Smart Contracts Auditor

@wh01s7
pawel.kurylowicz@composable-security.com

https://twitter.com/drdr_zz
mailto:damian.rusinek@composable-security.com
https://twitter.com/wh01s7
mailto:pawel.kurylowicz@composable-security.com

	1 Retest summary (2025-05-20)
	1.1 Results
	1.2 Scope

	2 Current findings status
	3 Security review summary (2025-05-14)
	3.1 Client project
	3.2 Results
	3.3 Centralization Risk
	3.4 Scope

	4 Project details
	4.1 Projects goal
	4.2 Agreed scope of tests
	4.3 Threat analysis
	4.4 Testing methodology
	4.5 Disclaimer

	5 Vulnerabilities
	[SHRM-f9d2b88d-M01] Inconsistent state via reentrancy
	[SHRM-f9d2b88d-L01] Lack of two-step ownership transfer
	[SHRM-f9d2b88d-L02] Rewards and tokens loss on reverting reward token
	[SHRM-f9d2b88d-L03] Denial of Service due to Out of Gas error
	[SHRM-f9d2b88d-L04] Invalid revenue amount transferred
	[SHRM-f9d2b88d-L05] Arbitrary call to swapper
	[SHRM-f9d2b88d-L06] Revert on approvals

	6 Recommendations
	[SHRM-f9d2b88d-R01] Use custom errors
	[SHRM-f9d2b88d-R02] Emit events for important state changes
	[SHRM-f9d2b88d-R03] Remove unnecessary code
	[SHRM-f9d2b88d-R04] Implement full metadata interface
	[SHRM-f9d2b88d-R05] Change comparison sign
	[SHRM-f9d2b88d-R06] Remove unused ERC721EnumerableForbiddenBatchMint custom error
	[SHRM-f9d2b88d-R07] Consider using newest Solidity version

	7 Impact on risk classification
	8 Long-term best practices
	8.1 Use automated tools to scan your code regularly
	8.2 Perform threat modeling
	8.3 Use Smart Contract Security Verification Standard
	8.4 Discuss audit reports and learn from them
	8.5 Monitor your and similar contracts

